التخطي إلى المحتوى الرئيسي

تطور علم الإلكترونيات

تطور علم الالكترونيات

يقف علم الإلكترونيات وراء تطور الكثير من المجالات العلمية و التطبيقية الأخرى فمثلاً فى الطب التطور الحادث فيه الآن هو فى الواقع تطور فى الأجهزة الطبية التى قادت إلى أساليب جديدة فى إجراء الجراحات .و أساليب التشخيص.  و كذلك الطفرة فى صناعة السيارات و الطائرات و السفن و الصناعة عموما يقف ورائها بشكل مباشر التطور فى الأجهزة الالكترونية. إذن ماهى قصة هذا العلم المذهل؟

1- الصمامات المفرغة

لقد تم اختراع أول عنصر فعال في عالم الإلكترونيات وهو الصمام الثنائي (diode) على يد عالم الفيزياء الإنجليزي جون فليمنغ (John Ambrose Fleming) وذلك في عام 1904م.

 ويتكون الصمام من أنبوب زجاجي مفرغ من الهواء يوجد في داخله عند طرفيه قطبين كهربائيين يسمى أحدهما المهبط (cathode) والآخر المصعد (anode) ويوجد تحت المهبط دائرة تسخين كهربائية تعمل على تسخين المادة المعدنية التي يصنع منها المهبط والتي تطلق سيل من الإلكترونات الحرة عند تسخينها. وعند تسليط جهد موجب على المصعد يقوم بجذب الإلكترونات المنبعثة من المهبط مما يؤدي إلى سريان تيار كهربائي في الدائرة الكهربائية الخارجية للصمام أما عند تسليط جهد سالب على المصعد فإن سريان التيار يتوقف على الفور أي أن هذا العنصر الإلكتروني يسمح بمرور التيار باتجاه واحد فقط ويمنع مروره في الاتجاه المعاكس. ولذلك فقد كان أول استخدام عملي لهذا العنصر البسيط في دوائر التقويم ودوائر الكشف. أما الاختراع الأكثر أهمية في عالم الإلكترونيات فقد تحقق على يد المهندس الكهربائي والمخترع الأمريكي لي دي فورست (Lee De Forest) وذلك في عام 1906م عندما تمكن من إضافة شبكة معدنية تقع بين المهبط والمصعد ليحول بذلك الصمام الثنائي إلى صمام بثلاثة أقطاب (triode) وقد أطلق اسم الشبكة (Grid) على هذا القطب الثالث. وتكمن أهمية الشبكة بقدرتها على التحكم بقيمة التيار العالي نسبيا الذي يسري بين المهبط والمصعد وذلك من خلال تسليط قيم صغيرة من الجهد الكهربائي عليها. ولقد تم تطوير الصمام الثلاثي لتحسين أدائه من خلال إضافة عدد من الشبكات يستخدم بعضها لمنع التذبذب الداخلي في المضخمات وبعضها لبناء دوائر المزج (mixers) فظهرت بذلك الصمامات الرباعية (tetrodes) والخماسية (pentodes). ومع اختراع الصمام الثلاثي أصبح بالإمكان بناء أهم دائرتين كهربائيتين كان مهندسو الاتصالات في أمس الحاجة إليهما لتطوير قدرات أنظمة الاتصالات وهما دائرة التذبذب ( المذبذب) ودائرة التضخيم ( المضخم). فالمذبذب يقوم بتوليد إشارات كهربائية ذات ترددات مختلفة وذلك من خلال تحويل التيار الثابت إلى تيار متردد حيث يتم التحكم بقيمة التردد باستخدام عناصر غير فعالة كالمحثات والمكثفات والمقاومات في الدائرة الخارجية للصمام الثلاثي. أما المضخم فيقوم بتضخيم الإشارات الكهربائية الحاملة للمعلومات والتي تضعف بشكل كبير عند انتقالها من المرسل إلى المستقبل عبر مختلف قنوات الاتصال. وبهذا الاختراع العظيم حدثت نقلة نوعية في مختلف مجالات الهندسة الكهربائية ففي عام 1913م تم إجراء أول مكالمة هاتفية لاسلكية بين بريطانيا وأميركا بعد أن تم استخدام المضخمات الكهربائية. وتم كذلك بناء أنظمة البث الإذاعي في عام 1918م وأنظمة البث التلفزيوني في عام 1935 وبذلك بعد أن تمكن المهندسون من بناء مستقبلات قادرة على التقاط الإشارات الضعيفة جدا التي تبثها محطات البث الإذاعي والتلفزيوني. وعلى الرغم من الدور الكبير الذي لعبه الصمام الثلاثي في تقدم الأنظمة الكهربائية وخاصة أنظمة الاتصالات إلا أن بعض عيوبه وقفت حجر عثرة أمام طموح المهندسين في بناء أنظمة إلكترونية متطورة. إن من أهم عيوب الصمام الإلكتروني كبر حجمه الذي لا يقل عن حجم الإصبع واستهلاكه العالي للطاقة الكهربائية حيث لا يعمل إلا عند جهد كهربائي مرتفع يصل لعشرات الفولتات إلى جانب حاجته لدائرة كهربائية مستقلة لتسخين المهبط. أما عيبه الأكبر فهو أنه مصنوع من الزجاج ولذا فهو معرض للكسر عند تعرضه للصدمات مما حال دون استخدامه في كثير من التطبيقات. ولبيان مدى تأثير هذه العيوب على تصنيع الأنظمة الكهربائية نورد المثال التالي فعند تصنيع أول حاسوب رقمي في عام 1945م بلغ عدد الصمامات المستخدمة فيه ثمانية عشر ألف صمام احتلت ما مساحته ستين مترا مربعا وكان يستهلك من الطاقة الكهربائية ما يزيد عن مائة وخمسون كيلواط على الرغم من أن قدرته الحسابية لا تتجاوز قدرة أصغر الحواسيب التي تم تصنيعها في السبعينات والتي تم تصنيع جميع مكوناتها على دائرة متكاملة واحدة لا يتجاوز حجمها حجم صمام إلكتروني واحد ولا يزيد استهلاكها من الطاقة عن واط واحد. وعلى الرغم من أن الترانزستورات قد حلت محل الصمامات في كثير من التطبيقات إلا أن الصمامات العالية القدرة لا زالت مستخدمة في التطبيقات التي يلزمها قدرة عالية كمحطات البث الإذاعي والرادارات. 

2- المواد شبه الموصلة (Semiconductor Materials)لقد تم استخدام المواد شبه الموصلة في صناعة الترانزستور لما تتميز به هذه المواد من خصائص فريدة عند توصيلها للكهرباء فهي تختلف عن المواد الموصلة للكهرباء بإمكانية التحكم في درجة توصيلها من خلال إضافة شوائب من عناصر محددة في بنيتها البلورية. وتتوفر المواد شبه الموصلة على الأرض إما على شكل عناصر فيزيائية خالصة تقع في العامود الرابع من الجدول الدوري وهي عنصري الجرمانيوم والسيليكون أو من مواد مركبة ناتجة عن خلط بعض عناصر العمود الثالث كالبورون والألمنيوم والأنديوم والقاليوم مع عناصر العمود الخامس كالفوسفور والزرنيخ (الأرسنيد) والبزموث منتجة مواد شبه موصلة كفوسفيد الإنديوم وأرسنيد القاليوم وغيرها من المركبات التي قد تتفوق على العناصر شبه الموصلة الخالصة في بعض خصائصها الكهربائية. لقد كان الجرمانيوم هو العنصر المستخدم في صناعة الترانزستورات في بداية عهدها إلا أنها لم تكن تعمل بشكل موثوق إلا عند درجات الحرارة التي تقل عن أربعين درجة مئوية وذلك بسبب حساسية الجرمانيوم العالية للحرارة والتي تعود لتدني قيمة فجوة الطاقة (energy gap) بين نطاقي التكافؤ والتوصيل (conduction & valence bands) فيها والتي يبلغ 0.7 إلكترون فولت. وفي عام 1954م تمكن المهندسون من استخدام السيليكون في صناعة الترانزستور بعد التغلب على بعض المشاكل التصنيعية. ويتميز السيليكون على الجرمانيوم بكبر قيمة فجوة الطاقة فيه حيث تبلغ 1.1 إلكترون فولت مما يعطيه ثباتا كبيرا في خصائصه الكهربائية يمتد على نطاق واسع من درجات الحرارة. ومن حسنات السيليكون أن مادته الخام وهي ثاني أكسيد السيليكون (SiO2) متوفرة بكميات كبيرة في الطبيعة خاصة في رمال الصحراء. إن المواد شبه الموصلة النقية تعتبر مواد عازلة للكهرباء ولكن يمكن تحويلها إلى مواد موصلة من خلال إضافة شوائب من مواد محددة حيث تزيد موصليتها مع زيادة نسبة الشوائب فيها. ويتم التحكم بدرجة توصيل مادة السيليكون النقي أو غيره من المواد شبه الموصلة من خلال إضافة مواد شائبة في بنيتها بما يسمى عملية التطعيم (doping). ويوجد نوعان من التطعيم فالنوع الأول يتم من خلال إضافة مادة شائبة بمقدار ضئيل ومحدد مأخوذة من عناصر العامود الخامس في الجدول الدوري كالفوسفور مثلا ويكون الناتج في هذه الحالة مادة شبه موصلة تمتلك فائض من الإلكترونات الحرة ويطلق على هذا النوع من المواد الشائبة اسم المواد المانحة (donars). ويساوي عدد الإلكترونات الفائضة عدد ذرات المادة الشائبة المضافة ويطلق على هذه المادة شبه الموصلة المطعمة شبه موصل من النوع السالب (N-type) وذلك لأن الإلكترونات ذات الشحنات السالبة هي المسؤولة عن حركة التيار الكهربائي فيها. أما النوع الثاني فيتم تصنيعه من خلال إضافة مادة شائبة من عناصر العامود الثالث في الجدول الدوري كالبورون مثلا منتجة بذلك مادة شبه موصلة تفتقر إلى الإلكترونات الحرة في المدار الخارجي لذراتها وقد أطلق العلماء على هذا المكان الخالي من الإلكترون اسم الفجوة (hole) ويطلق على هذا النوع من المواد الشائبة اسم المواد القابلة (acceptors). وعند تسليط جهد كهربائي على هذه المادة المطعمة فإن الفجوات ستتحرك عند انتقال الإلكترونات إليها بعكس اتجاه حركة الإلكترونات ولذا يمكن تخيلها على أنها حاملة لشحنات موجبة ولذلك يطلق على هذه المادة المطعمة شبه موصل من النوع الموجب (P-type). وعند تطعيم منطقتين متجاورتين على بلورة من مادة شبه موصلة كالسيليكون مثلا بحيث تكون أحدهما من النوع السالب والأخرى من النوع الموجب فإنه يتكون عند الحد الفاصل بينهما منطقة تسمى المنطقة المنضبة (depletion region). وتتكون هذه المنطقة نتيجة لهجرة الإلكترونات الزائدة الموجودة في المنطقة السالبة إلى المنطقة الموجبة لتملأ الفجوات الموجودة فيها ولكن هذه الهجرة ستقتصر فقط على الإلكترونات الموجودة في المناطق المجاورة للحد الفاصل بين المنطقتين. ويعود السبب في ذلك إلى أن الإلكترونات المهاجرة ستترك خلفها ذرات موجبة الشحنة وعند وصولها إلى المنطقة الموجبة فإنها ستحول ذراتها إلى ذرات سالبة الشحنة وبهذا سيتكون فرق جهد بين طرفي المنطقة المنضبة وإذا ما وصل فرق الجهد هذا إلى قيمة معينة فإن المجال الكهربائي الناتج عنه سيحول دون هجرة مزيد من الإلكترونات. ويطلق على فرق الجهد هذا أسماء عدة منها جهد الوصلة (junction voltage) أو جهد الحجز (barrier voltage) أو الجهد المبيت (built-in voltage) وتتحدد قيمته وكذلك مقدار عرض المنطقة المنضبة بشكل رئيسي من نوع المادة شبه الموصلة وبشكل ثانوي من تركيز التطعيم في المنطقتين وتبلغ قيمته 0.7 فولت تقريبا للسيليكون و 0.27 فولت للجرمانيوم. إن مبدأ عمل الترانزستورات وكذلك الثنائيات يعتمد على وجود هذه المنطقة المنضبة فعند تسليط فرق جهد من مصدر خارجي على طرفي المنطقتين من النوع الموجب والسالب أو ما يسمى بوصلة موجب-سالب (PN junction) فإنه يمكن التحكم بعرض هذه المنطقة المنضبة وكذلك فرق الجهد المحصل عليها. فعندما يتم وصل الطرف الموجب للمصدر بالمنطقة الموجبة والقطب السالب بالسالبة فإن إتجاه المجال الكهربائي المسلط سيكون بعكس إتجاه المجال الكهربائي المبيت فيعمل على تقليله وعندما تصل قيمة الجهد المسلط قيمة الجهد المبيت فإن المنطقة المنضبة ستختفي تماما وسيمر تيار كهربائي من خلال الوصلة ويسمى هذا النوع من التسليط للجهد بالإنحياز الأمامي (forward bias). أما إذا تم وصل الطرف الموجب للمصدر بالمنطقة السالبة والسالب بالموجبة فإن إتجاه المجال الكهربائي المسلط سيكون بنفس إتجاه المجال الكهربائي المبيت فيعمل على تقويته مما يمنع مرور أي تيار من خلال الوصلة ويسمى هذا النوع من التسليط للجهد بالإنحياز العكسي (backward bias). إن مثل هذه الجهاز الإلكتروني البسيط المكون من وصلة واحدة (single junction) يعمل كثنائي (diode) يسمح بمرور التيار في إتجاه معين ولا يسمح بمروره في الإتجاه المعاكس ولهذه الثنائيات تطبيقات واسعة سنبينها في حينها. 

3- الترانزستورات (Transistors)لقد تم التغلب على جميع عيوب الصمام الإلكتروني بإختراع الترانزستور في عام 1947م وذلك على يد ثلاثة من الفيزيائيين الأميركيين العاملين في مختبرات بيل الأمريكية وهم جون باردين (John Bardeen) وولتر براتين (Walter Brattain) ووليم شوكلى (William Shockley) والذين حصلوا على جائزة نوبل في عام 1956م تقديرا لجهودهم على هذا الإنجاز العظيم. والترانزستور عنصر إلكتروني فعال (active device) مصنوع من مواد شبه موصلة كالجرمانيوم والسيليكون وله ثلاثة أقطاب كما هو الحال مع الصمام الثلاثي ولكن بدون دائرة تسخين. ويتميز الترانزستور على الصمام الإلكتروني بصغر حجمه الذي لا يتجاوز إذا ما صنع منفردا حجم حبة الحمص أما إذا كان في دوائر متكاملة فإنه بالإمكان تصنيع ملايين الترانزستورات على شريحة لا تتجاوز مساحتها السنتيمتر المربع الواحد مما أدى إلى تقليص بالغ في أحجام وأوزان الأجهزة الكهربائية. ويتميز كذلك بأنه يعمل على جهد كهربائي منخفض لا يتجاوز عدة فولتات وبقلة استهلاكه للطاقة الكهربائية التي تقاس بالميللي واط في الترانزستورات المنفردة والميكروواط وحتى النانوواط في الدوائر المتكاملة مما أدى إلى تصنيع أجهزة كهربائية مختلفة تعمل بالبطاريات الصغيرة ولفترات طويلة من الزمن. ويتميز بصلادته فهو جسم مصمت من مواد شبه موصلة حيث لا توجد في داخله أجزاء متحركة ولذلك فهو لا يتأثر بالصدمات والإهتزازات الميكانيكية كما هو الحال مع الصمام الإلكتروني ولذا يمكن وضعه في الأجهزة المحمولة. ويتميز كذلك بطول عمره التشغيلي الذي يمتد لعشرات السنوات وبإمكانية عمله على نطاق واسع من درجات الحرارة وبإمكانية إنتاجه بكميات كبيرة جدا وبأسعار منخفضة جدا. ومع اختراع الترانزستور الذي يعده العلماء أعظم اختراع في القرن العشرين تجددت أمال المهندسين في صنع معدات وأجهزة إلكترونية صغيرة الحجم وقليلة الاستهلاك للطاقة كالحواسيب الرقمية والتلفزيونات الملونة والراديوات الصغيرة والهواتف المحمولة والآلات الحاسبة المكتبية واليدوية. وكذلك فإنه لا يوجد الآن ما يحول دون وضع المعدات والأجهزة الإلكترونية في مختلف أنواع المركبات والصواريخ العابرة للقارات وفي المركبات الفضائية والأقمار الصناعية حيث أنها لا تحتل حيزا كبيرا ويمكنها أن تعمل على البطاريات. 
4- الدوائر المتكاملة Integrated Circuits :

الدائرة المتكاملة هى شريحة صغيرة من شبه موصل (السليكون غالبا) ذات أبعاد صغيرة تقاس بالمليمتر و فى البداية تم وضع عشرات الترنزستورات عليها ثم مئات الترنزستورات ثم ألاف الترنزستورات و المكونات الأخرى عليها ثم وصل عدد المكونات الأن لملايين المكونات التى تتصل معا لتكون دوائر تقوم بوظائف محددة مما ساهم بشكل كبير فى تخفيض حجم و وزن و ثمن الدوائر الالكترونية وزيادة سرعتها و كفائتها

تعليقات

المشاركات الشائعة من هذه المدونة

أهمية وجود النباتات في المنزل وخاصة في غرفة المكتب

لا شك أن وجود النباتات في المنزل يعزز من جمال البيئة الداخلية ويضيف لمسة طبيعية مميزة، ولكن الفوائد الحقيقية للنباتات تتجاوز مجرد الجمال البصري. تتعدد الفوائد الصحية والنفسية التي تقدمها النباتات لنا، وفيما يلي أهم الأسباب التي تجعل من وجود النباتات في المنزل، وخصوصاً في غرفة المكتب، ضرورة ملحة: 1. تحسين جودة الهواء: تعمل النباتات على تحسين جودة الهواء من خلال امتصاص ثاني أكسيد الكربون وإطلاق الأكسجين. كما أنها تمتص الملوثات الضارة من الهواء مثل الفورمالديهايد والبنزين، مما يجعل البيئة الداخلية أكثر نقاءً وصحة. 2. تعزيز التركيز والإنتاجية: تشير الدراسات إلى أن وجود النباتات في مكان العمل يمكن أن يزيد من التركيز والإنتاجية. النباتات تساعد في تقليل مستويات التوتر وتعزز الشعور بالراحة النفسية، مما ينعكس إيجاباً على الأداء الوظيفي والإبداع. 3. تقليل الضوضاء: تعمل النباتات كحاجز طبيعي يمتص الضوضاء ويقلل من التشتت السمعي، مما يساعد على خلق بيئة عمل هادئة ومريحة. 4. التأثير الإيجابي على الصحة النفسية: النظر إلى النباتات والتفاعل معها يمكن أن يساعد في تقليل مستويات القلق والاكتئاب. اللون الأخض...

الجزء الثاني من هندسة التلقين Prompting Engineering 2nd Part

  عناصر التلقينة الجيدة مرة أخرى ما المقصود بهندسة التلقين ؟ هى تقنية قوية وفعالة لمخاطبة النماذج اللغوية للذكاء الصناعى مثل   Chat GPT باستخدام اللغات الطبيعية من خلال تصميم تلقينات Prompts تسمح لهذه النماذج اللغوية بإنتاج مخرجات دقيقة وذات صلة ومراعية للسياق و لضمان ذلك يجب مراعاة عناصر التلقينة الجيدة و التى سوف أوضحها فيما يلى: 1-           المهمة Task : : يمكن للنماذج اللغوية مثل   Chat GPT القيام بالكثير من المهام المدهشة مثل كتابة مقال، قصة أو اقتراح برنامج تسويق أو كتابة كود برمجى بأى لغة برمجة أو إنشاء صفحات انترنت والكثير من المهام ويمكنك سؤال Chat GPT نفسه عما يمكنه القيام به من مهام بتوجيه السؤال التالى له ماهى 100 مهمة يمكنك القيام بها كنموذج لغوى ؟ وعموما من المهام المفيدة ·          الفرز Sorting ·          الفلترة   Filtering ·          الاستنباط Deduction  ...

هندسة التلقين Prompting Engineering

  تقنيات التلقين    promoting engineering التقنية الأولى : Zero-Shot Prompting  هي التقنية الأصلية وهي كتابة تلقينة مباشرة وعامة بدون سياق ولا أي مثال والنموذج سيكون قادر على تزويدك بإجابات عن أسئلة لم يتم تدريبه بالضرورة على الإجابة عليها بشكل مباشر أمثلة: ما هي عاصمة فرنسا ؟  لخص النص الثاني ....   ترجم الجملة التالية .... أي أننا نتعامل مع النموذج اللغوي على أنه Chat bo t مع العلم بأن النموذج اللغوي له إمكانيات أكبر من  Chat bot التقنية الثانية :   Few-Shot Prompting تقنية أصلية تستخدم حتى في تدريب النماذج تمكن هذه التقنية النماذج اللغوية من أداء المهام الأكثر تعقيدا بشكل أفضل عبر تقديم مجموعة من العروض التوضيحية لهذه النماذج. ذلك كما فعلنا في التلقينة الجيدة. مثال: يتم إعطاء النموذج المثال التالى:  س: المغرب ج: الرباط   فإذا أدخلنا بعد ذلك للنموذج :  س: السودان  فإنه سوف يجيب :  ج: الخرطوم     هذه التقينة مثيرة للاهتمام رغم ما قد تبدو عليه أنها بسيطة ولكي نختبر قوة هذه التقني...