التخطي إلى المحتوى الرئيسي

Developing of atomic models

The development of atomic models is a fascinating story that spans over two millennia. It shows how human curiosity and scientific inquiry have led to a deeper understanding of the nature of matter and its structure. Here is a brief overview of some of the major milestones in this journey:


- The Early Greeks Theory: The first atomic theorist was Democritus, a Greek scientist and philosopher who lived in the fifth century BC. He proposed that all matter was made of tiny, indivisible particles called atoms, which varied in shape and size. He also suggested that atoms moved in a void and combined in different ways to form different substances.

- Dalton's Atomic Model: John Dalton developed the atomic theory around the 1800s. He based his model on experimental evidence and the law of conservation of mass. He stated that atoms were solid spheres that could not be broken down into anything simpler, that atoms of a given element were identical to each other, that atoms of different elements were different from one another, and that during chemical reactions atoms rearranged to make different substances.

- Thomson's Atomic Model: J.J. Thomson discovered the electron in 1897, which proved that atoms were not indivisible. He proposed that atoms were spheres of positive charge with negative electrons embedded in them, like plums in a pudding. This model explained the existence of two types of static electricity and the deflection of cathode rays by electric and magnetic fields.

- Rutherford's Atomic Model: Ernest Rutherford conducted the famous gold foil experiment in 1909, which showed that most of the mass and positive charge of an atom was concentrated in a tiny region at its center, called the nucleus. He also concluded that electrons orbited the nucleus at a large distance, leaving most of the atom empty. This model explained the scattering of alpha particles by thin metal foils and the existence of isotopes.

- Bohr's Atomic Model: Niels Bohr improved Rutherford's model in 1913 by introducing the concept of energy levels or shells for electrons. He proposed that electrons could only occupy certain fixed orbits around the nucleus, and that they could jump from one orbit to another by absorbing or emitting energy. This model explained the emission and absorption spectra of hydrogen and other elements.

- Modern Atomic Model: The modern atomic model is based on quantum mechanics, which describes the behavior of subatomic particles using mathematical equations. It states that electrons do not have definite orbits, but rather exist in regions of space called orbitals, where they have a certain probability of being found. It also states that electrons have both wave-like and particle-like properties, and that their exact position and momentum cannot be known simultaneously. This model accounts for various phenomena such as chemical bonding, atomic stability, electron spin, and nuclear fission and fusion.

تعليقات

المشاركات الشائعة من هذه المدونة

أهمية وجود النباتات في المنزل وخاصة في غرفة المكتب

لا شك أن وجود النباتات في المنزل يعزز من جمال البيئة الداخلية ويضيف لمسة طبيعية مميزة، ولكن الفوائد الحقيقية للنباتات تتجاوز مجرد الجمال البصري. تتعدد الفوائد الصحية والنفسية التي تقدمها النباتات لنا، وفيما يلي أهم الأسباب التي تجعل من وجود النباتات في المنزل، وخصوصاً في غرفة المكتب، ضرورة ملحة: 1. تحسين جودة الهواء: تعمل النباتات على تحسين جودة الهواء من خلال امتصاص ثاني أكسيد الكربون وإطلاق الأكسجين. كما أنها تمتص الملوثات الضارة من الهواء مثل الفورمالديهايد والبنزين، مما يجعل البيئة الداخلية أكثر نقاءً وصحة. 2. تعزيز التركيز والإنتاجية: تشير الدراسات إلى أن وجود النباتات في مكان العمل يمكن أن يزيد من التركيز والإنتاجية. النباتات تساعد في تقليل مستويات التوتر وتعزز الشعور بالراحة النفسية، مما ينعكس إيجاباً على الأداء الوظيفي والإبداع. 3. تقليل الضوضاء: تعمل النباتات كحاجز طبيعي يمتص الضوضاء ويقلل من التشتت السمعي، مما يساعد على خلق بيئة عمل هادئة ومريحة. 4. التأثير الإيجابي على الصحة النفسية: النظر إلى النباتات والتفاعل معها يمكن أن يساعد في تقليل مستويات القلق والاكتئاب. اللون الأخض...

الجزء الثاني من هندسة التلقين Prompting Engineering 2nd Part

  عناصر التلقينة الجيدة مرة أخرى ما المقصود بهندسة التلقين ؟ هى تقنية قوية وفعالة لمخاطبة النماذج اللغوية للذكاء الصناعى مثل   Chat GPT باستخدام اللغات الطبيعية من خلال تصميم تلقينات Prompts تسمح لهذه النماذج اللغوية بإنتاج مخرجات دقيقة وذات صلة ومراعية للسياق و لضمان ذلك يجب مراعاة عناصر التلقينة الجيدة و التى سوف أوضحها فيما يلى: 1-           المهمة Task : : يمكن للنماذج اللغوية مثل   Chat GPT القيام بالكثير من المهام المدهشة مثل كتابة مقال، قصة أو اقتراح برنامج تسويق أو كتابة كود برمجى بأى لغة برمجة أو إنشاء صفحات انترنت والكثير من المهام ويمكنك سؤال Chat GPT نفسه عما يمكنه القيام به من مهام بتوجيه السؤال التالى له ماهى 100 مهمة يمكنك القيام بها كنموذج لغوى ؟ وعموما من المهام المفيدة ·          الفرز Sorting ·          الفلترة   Filtering ·          الاستنباط Deduction  ...

هندسة التلقين Prompting Engineering

  تقنيات التلقين    promoting engineering التقنية الأولى : Zero-Shot Prompting  هي التقنية الأصلية وهي كتابة تلقينة مباشرة وعامة بدون سياق ولا أي مثال والنموذج سيكون قادر على تزويدك بإجابات عن أسئلة لم يتم تدريبه بالضرورة على الإجابة عليها بشكل مباشر أمثلة: ما هي عاصمة فرنسا ؟  لخص النص الثاني ....   ترجم الجملة التالية .... أي أننا نتعامل مع النموذج اللغوي على أنه Chat bo t مع العلم بأن النموذج اللغوي له إمكانيات أكبر من  Chat bot التقنية الثانية :   Few-Shot Prompting تقنية أصلية تستخدم حتى في تدريب النماذج تمكن هذه التقنية النماذج اللغوية من أداء المهام الأكثر تعقيدا بشكل أفضل عبر تقديم مجموعة من العروض التوضيحية لهذه النماذج. ذلك كما فعلنا في التلقينة الجيدة. مثال: يتم إعطاء النموذج المثال التالى:  س: المغرب ج: الرباط   فإذا أدخلنا بعد ذلك للنموذج :  س: السودان  فإنه سوف يجيب :  ج: الخرطوم     هذه التقينة مثيرة للاهتمام رغم ما قد تبدو عليه أنها بسيطة ولكي نختبر قوة هذه التقني...